
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 4, April 2007

Software Defect Process and Product Model for High
Assurance Applications

Norman Schneidewind∗
Naval Postgraduate School, Pebble Beach, CA

One reason we are motivated to do this research is to suggest that it is not necessary to
wait until software is fielded before recording and analyzing defects. Assuming there is an
effective data collection process in place, we can record actual defects and predict future
defects for all software development phases. Our contribution to defect analysis research is
the modeling of the process attributes and the product reliability needed for safety critical
systems in NASA, using a queuing process approach that we believe is the first of its kind. We
feel this approach is important because defect process attributes, such as the time required to
correct defects, have a direct bearing on product attributes, such as the number of old defects
that remain unrepaired. The model has the capability of computing probabilities of defect
prediction and repair, and repair times This feature allows unrepaired defects to be fed back
into the model queue input, along with the new defects. The result provides a comprehensive
template of defect processing that the software engineer can use to assess both the efficacy of
defect processing and the reliability of the product that is the outcome of the process. A major
result was that the module with the highest probability of defect detection corresponds to the
module with the lowest values of defect count, source lines of code, and cyclomatic complexity.
Conversely, the module with the lowest probability corresponds to the module with the highest
values of these attributes. Thus, the engineer would be encouraged by these results to use
these relationships as a guide to predicting the probability of detection of defects on other
software systems with similar attributes. A remaining challenge in this research, an issue that
requires resolution, is that a coherent and comprehensive NASA defect and metrics database
should be developed to support research. While the individual data items in the NASA IV&V
Facility Metrics Data Program data repository are valuable, the defect data is not adequately
correlated to the metrics data.

I. Introduction

IN previous research, we introduced the concept of fault correction profiles. Our motivation was that, in general,
software reliability models have focused on modeling and predicting the failure detection process and have not given

equal priority to modeling the fault correction process.1,2 We felt it was important to address the fault correction
process in order to identify the need for process improvements. However, it is even more important to consider
defects—a metric that can be obtained earlier that either faults or failures because it should be possible to have an
even greater effect on process improvement and the achievement of reliability goals when a defect detection and
repair process is utilized, as shown in Fig. 1. In our search of the literature we have not found articles that address the
queuing and service aspects of defect analysis. We feel this approach is important because defect process attributes,

Received 26 June 2006; accepted for publication 13 February 2007. This material is declared a work of the U.S. Government
and is not subject to copyright protection in the United States. Copies of this paper may be made for personal or internal use, on
condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA
01923; include the code 1542-9423/04 $10.00 in correspondence with the CCC. This material is a work of the U.S. Government
and is not subject to copyright protection in the United States.∗ Fellow of the IEEE, IEEE Congressional Fellow 2005, Professor Emeritus, Naval Postgraduate School, 2822 Raccoon Trail,
Pebble Beach, CA 93953, USA. ieeelife@yahoo.com

739

SCHNEIDEWIND

Fig. 1 Defect detection and repair process.

such as the time required to correct defects, have a direct bearing on product attributes, such as the number of old
defects that remain unrepaired in Fig. 1.

The data used in this research was obtained from the NASA IV&V Facility Metrics Data Program data repository
web site. Projects are given a pseudo name. It is not possible to identify the specific project because this information
is not provided in the repository. The pseudo name of our data is the JM1Data Set. There are two types of data used.
One is for a single module (see Table 1 for a summary of the results). In this case, defect processing data (e.g., time
to correct defects) was collected for all the defects on a single module. The other type is comprised of data from 22
modules (see Table 2 for a summary of the results). In this case, defect count and metrics (source lines of code and
cyclomatic complexity) data was collected for the 22 modules.

One reason we are motivated to do this research is to suggest that it is not necessary to wait until software is
fielded before recording and analyzing defects. Assuming there is an effective data collection process in place, we
can record actual defects and predict future defects for all software development phases. Unfortunately, there seems
to be some confusion about how defects are processed. For example,3 claims “that in industry, actual defect density
of a software system cannot be measured until it has been put into production and has been used extensively by
the end user. Actual defect density information as found by the end user becomes available too late in the software
lifecycle to affordably guide corrective actions to software quality.” This is not true in all cases because, as shown
in,4 the developers of the NASA Space Shuttle software analyze defects related to requirements changes throughout
the life cycle. Although these developers focus on defects vice density, the latter could be computed from known
or estimated software size. Furthermore, as described in,5 defects can be defined and utilized for all development
phases (see Definitions below).

A. Definitions
Software defect: This subtype includes all software defects that have been encountered or discovered by

examination or operation of the software product. Possible values in this subtype are these:5

• Requirements defect: A mistake made in the definition or specification of the customer needs for a software
product. This includes defects found in functional specifications; interface, design, and test requirements; and
specified standards.

740

SCHNEIDEWIND

Table 1 Defect repair system attributes (JM1 Data Set)—Module 11181, except where noted.

New defects New defects
regression regression

Entity equation equation R2 Values Definition

sloc (Figure 2) Dn = .0121 M1 −
11.675

0.9936 Correlation coefficient =
0.8449 for M1 vs. M2

Based on data for 22
modules

cyclomatic complexity Dn = .07411
M2 − 6.0303

0.9919 Based on data for 22
modules

How entity or value
was determined

n̄ Result of data set
analysis

17 defects total mean number of
defects in defect repair
system

n̄r Result of data set
analysis

16 defects mean number of defects
repaired

n̄w Computed from
equation (1.12)

1 defect threshold = 10
defects

mean number of defects
waiting for repair

�Tmin,max Computed from data
set data

1426 days change in time from
minimum time to next
defect to maximum
time to next defect

λ = n̄/�Tmin,max Computed from data
set data

0.0119 defects per day defect input rate

MTTD Computed from
equation (1.6)

117.75 days allowable
value = 150 days

mean time to defect

Pr Computed from
equation (1.7)

0.9412 probability of defect
repair

�Ci = t̄s Computed from
equation (1.9)

228.96 days threshold =
100 days

mean time required to
repair defects

ρ Computed from
equations (1.10)
and (1.14)

1.9444 using 1 station
0.6812 using 4 stations
threshold =< 1.0

defect repair utilization

t̄w Computed from
equation (1.15)

84.03 days mean defect wait time

t̄ Computed from
equation (1.16)

312.99 days total mean time in defect
repair system

DnPd = 0.0121
M1 − 11.675

Mean value of
equation

48.23 defects mean number of new
defects detected

Mean [(Actual − Dn)/
Actual]

−0.0040 (sample
size = 22)

Mean relative error of
New Defects

Mean [(Actual − Dn)/
Actual]

−0.1530 Mean relative error of
New Defects for the
model in reference
[MAR]

Do = DnPd(2 − Pr) = Mean value of 51.06 defects mean number of old
(0.0121M1 −

11.675)Pd)

equation defects

(2 − Pr)

• Design defect: A mistake made in the design of a software product. This includes defects found in functional
descriptions, interfaces, control logic, data structures, error checking, and standards.

• Code defect: A mistake made in the implementation or coding of a program. This includes defects found in
program logic, interface handling, data definitions, computation, and standards.

741

SCHNEIDEWIND

Table 2 Multiple module attributes for data set JM1.

Probability of
detection for

Module j (Pdj)

Module j Defect Count Sloc M1j Cyclomatic complexity M2j Pdj = 1 −
(

M1j∑
j

M1j

)

11181 26 3442 470 0.8160
11182 20 1129 128 0.9397
11183 14 1824 268 0.9025
11184 10 222 19 0.9881
11185 15 844 404 0.9549
11186 11 1411 127 0.9246
11187 14 1532 263 0.9181
11188 10 466 94 0.9751
11189 13 1280 207 0.9316
11190 7 186 42 0.9901
11191 10 107 24 0.9943
11192 0 706 94 0.9623
11193 9 790 34 0.9578
11194 10 1882 286 0.8994
11195 12 657 104 0.9649
11196 8 322 82 0.9828
11197 7 128 20 0.9932
11198 9 725 173 0.9613
11199 3 334 33 0.9821
11200 0 20 2 0.9989
11201 4 621 25 0.9668
11202 6 82 11 0.9956∑

j

M1j = 18710 Perfect linear

relationship with M1j

• Document defect: A mistake made in a software product publication. This does not include mistakes made to
requirements, design, or coding documents.

• Test case defect: A mistake in the test case causes the software product to give an unexpected result.
• Other work product defect: Defects found in software artifacts that are used to support the development

or maintenance of a software product. This includes test tools, compilers, configuration libraries, and other
computer-aided software engineering tools.

Note: in the following definitions, some of the symbols are specific to defect repair processing (e.g., �Ci) and other
are the usual symbols used in queuing analysis (e.g., ts).
i: defect identification
j: module identification
Mk: metric k
M1: sloc
M2: cyclomatic complexity
Dn: number of new defects in defect repair system
Do: number of old defects
Ti: time to next defect i
�Ti,i+1: change in time from defect i to defect i + 1 = time to next defect
�Tmin,max: change in time from minimum time to next defect to maximum time to next defect
�Ci: time required to repair defect i (resolved date–opened date)

742

SCHNEIDEWIND

�Ci: mean time required to correct defects = t̄s
ts: defect repair time
t̄s : mean defect repair time = �Ci
tw: defect wait time (defect entry date–defect open date)
t̄w: mean defect wait time
t̄ : total mean time in defect repair system
MTTD: mean time to defect
λ: defect input rate
n̄: total mean number of defects in defect repair system
n̄r : mean number of defects repaired
n̄w: mean number of defects waiting for repair
Pr: probability of defect repair
Pd: probability of defect detection (randomized for single module: 0, 1; computed for multiple modules)
ρ: defect repair utilization (for a stable defect repair system, ρ < 1.0)

In queuing parlance, ρ is the expected fraction of time a server is busy.6

N: number of repair stations (i.e., number of servers)

B. Rationale for Defect Detection and Repair Models
As stated in,7 “software depends heavily on the defects in a software product and the repair activity undertaken

to correct them.” This is a succinct statement of the rationale for our development of a defect detection and repair
model.

Furthermore, as reported in,8 IBM took an important step in moving toward a goal and measurement-driven
approach to defect elimination with a consistent use of defect models encompassing the entire software development
life cycle. While they recognized that quality must be viewed as much more than merely an absence of defects, defect
models allow them to view the entire process and to take a consistent view of gathering and tracking their data. It
provided a means for project teams to track the data and, along with the project managers and release managers, set
quality goals for each release. Creating a defect model allowed them to go back and take a more consistent view of
the data so that they could evaluate their progress towards quality goals. They wanted to know how many defects
they had and how they should evaluate their progress. They found that creating defect detection and repair models
was a positive quality step in itself. It provided focus for the entire team on quality objectives, and gave reality to
the magnitude of the quality challenge. As such, it readily became the basis for goal setting and concrete quality
improvement initiatives.

Given that defect detection and repair models are such an important part of quality improvement in companies
like IBM, we are encouraged to develop a model emphasizing the queuing aspects of defect detection and repair,
using the NASA defect data to test our model.

C. Related Research
According to,9 the “stopping rule” problem that involves determining an optimal release time for a software

application has been addressed by several researchers. However, most of these research efforts assume instantaneous
fault correction, an assumption that underlies many software reliability growth models, and hence provide optimistic
predictions of both the cost at release and the release time. This researcher presents an economic cost model that
takes into consideration explicit fault correction in order to provide realistic predictions of release time and release
cost. As you can see in Figure 1 and in Table 1, we do not assume instantaneous fault correction. In fact, our model
includes the time required to repair defects.

In,10 models were considered that use the number of defects detected in the earlier phases of the development
process as the independent variable. This number can be used to predict the number of defects to be detected later,
even in modified software products. A strong correlation between the number of earlier defects and that of later ones
was found. Using this relationship, a mathematical model was derived which may be used to estimate the number
of defects remaining in software. This defect model may also be used to guide software developers in evaluating the
effectiveness of the software development and testing processes. In contrast, our model focuses on the dynamics of
the defect repair queuing process, as exhibited in Figure 1, to make explicit the delays involved in repairing defects

743

SCHNEIDEWIND

that queue up for service. Our purpose is to identify the need for possible faster repair in order to improve the quality
of the software.

The aim of11 was to develop a quality prediction model. This model, COQUALMO, predicts the defect density
of the software under development where defects conceptually flow into a holding tank through various defect
introduction pipes and are removed through various defect removal pipes. COQUALMO consists of 2 sub-models,
namely the ‘Defect Introduction (DI)’ and the ‘Defect Removal (DR)’ models. The DI model is formulated using
product, process, computer and personnel attributes (based on COCOMO) and predicts the number of requirements,
design and coding defects that are introduced during various activities of the development life cycle. The residual
number of defects is the difference between the number of defects introduced and the number of defects removed.
We find this paper relevant and interesting because the author’s holding tank (our defect repair queue) and his pipes
(our defect repair service) are analogous to a queuing system for defect processing (see Fig. 1).

This article12 introduces the closed-loop defect removal model, a dynamic model that is used for software quality
management and latent defect prediction. The author’s model considers injected defects and escaped defects sepa-
rately. It gives the initial distribution of defects based on the organization’s baseline values for defect injection and
goals for defect removal effectiveness across phases. Actual values for defects are fed into the model after every
phase with additional indicators on defect injection and review effectiveness. Using statistical process control (SPC),
specification limits are fixed for predicted values of defects. Estimates are revised when the actual defect count cross
the defect specification limits. Causes of deviations are analyzed and preventive/corrective actions are taken. This
enables better quality planning, control, and management.

Our model is consistent with the above approach in that we compare actual or predicted defect quantities with the
desired limits, or thresholds, and if the bounds are exceeded, ascertain the cause and correct the process causing the
discrepancy.

II. Model Equations
Using the above definitions, Figure 1, and Table 1, we develop the model equations:

Defect input rate: λ = n̄/�Tmin,max = 0.0119 defects per day (1.1)

New defects: Dn = .0121M1 − 11.675 (obtained from regression using sloc) (1.2)

New defects: Dn = .07411M2 − 6.0303 (obtained from regression using cyclomatic complexity) (1.3)

DnPd = number of new defects detected = (.0121M1 − 11.675)Pd (1.4)

Note: henceforth, because the R2 value for defects as a function of sloc is higher than for defects as a function of
cyclomatic complexity (see Table 1), we will use equation (1.2) as a predictor of new defects. Another consideration
for this choice is expressed in the following: “Size is the easily quantifiable software attribute that is most closely
associated with the number of defects. The basic test of the effectiveness of complexity models and other indicators
of defect-proneness is to ask, “Does this model show a significantly higher correlation with defects than just size
(e.g., lines of code) alone?”.13 What this statement means is that a defect prediction model using complexity as the
predictor, may not have a significantly stronger relationship with defects than size alone.

Using Figure 1, we derive equation (1.5) for predicting old defects:

Do = DnPd(2 − Pr) = (.0121M1 − 11.675)Pd)(2 − Pr) (1.5)

Mean Time To Defect: MTTD =

n∑
i=1

Ti

n
= 117.75 days (1.6)

744

SCHNEIDEWIND

Probability of defect repair: Pr = n̄r

n̄
= 0.9412 (1.7)

Mean time to repair defects: �Ci =

n∑
i=1

�Ci

n
= 228.96 days (1.9)

Defect repair system utilization using 1 repair station: ρ =

⎛
⎜⎜⎝

n∑
i=1

�Ci

n

⎞
⎟⎟⎠

/
MTTD

=

⎛
⎜⎜⎝

n∑
i=1

�Ci

n

⎞
⎟⎟⎠

/ ⎛
⎜⎜⎝

n∑
i=1

Ti

n

⎞
⎟⎟⎠ = 1.9444 (infeasible since ρ must be <1) (1.10)

Utilization is revised to ρ = .6812 using 4 repair stations (see Table 1).
Based on the concept that the probability of defect detection Pdj, for module j, in a set of multiple modules, will

vary inversely with sloc, because it would be harder to detect defects in large modules than in small ones, we arrive
at equation (1.11):

Pdj = 1 −
(

M1j∑
j M1j

)
(1.11)

Of course, one could argue that if small modules are complex (e.g., high values of cyclomatic complexity), defects
could be difficult to detect. However, in the case of our data, there is a high correlation between sloc and cyclomatic
complexity (see Table 1).

Next, we wish to compute the mean number of defects waiting to be repaired. Figure 1 suggests how to do this.
Equation (1.12) provides the answer:

n̄w = n̄ − n̄r = 17 − 16 = 1 defect (1.12)

III. Model Structure
The first aspect of the model structure is the form of the defect repair queuing system in Figure 1 and the key

supporting equations that follow.
From queuing theory:6

For a multi server queuing system (see Figure 1):

ρ = (λt̄s)

N
= (λ�Ci)

N
(1.13)

With N = 4, and substituting data from Table 1:

ρ = (λ�Ci)

N
= [(.0119)(228.96)]

4
= .6812 (1.14)

This is a reasonable value for the defect repair system utilization. If N = 1, ρ = 1.9444 in Table 1, which exceeds
the allowable utilization for a stable queue system (i.e., if ρ > 1, the defect input rate exceeds the defect service rate).

745

SCHNEIDEWIND

Another key queuing equation involves the computation of the mean time that defects have to wait to be repaired,
given by equation (1.15), which uses equation (1.12):

Mean defect wait time = t̄w = n̄w

λ
= 1

0.0119
= 84.03 days (1.15)

Then, we can go on to compute the total mean time defects spend in the defect repair system by using equation
(1.16):

t̄ = t̄s + t̄w = 228.96 + 84.03 = 312.99 days (1.16)

The second aspect of the model structure is the question of whether there should be a single probability of defect
detection for all types of defects or whether there should be a different probabilities for each type. The former would
be easier to model, but it would be unrealistic because as pointed out in,14 some defects may be easier to detect
than others, and, conversely, some may be more difficult to detect than others. A contrary view is expressed in,15

as follows: “Defect insertion and detection rates tend to remain relatively constant as long as the project’s software
processes remain stable. While the rates are not exactly constant, they perform within a recognized range.” The key
to this statement is “remain stable”. Since we want our model to be flexible and to accommodate all defect detection
events, we choose to use a variable defect detection probability. Therefore, we opt for randomizing the probability of
defect detection Pd between 0 and 1 for a single module. This, then, allows us to predict the number of new defects
detected DnPd and the number of old defects Do in equations (1.4) and (1.5), respectively.

IV. Analysis of Prediction Results
Examination of prediction results allows software quality decision makers to judge the quality of defect prediction

models and to use the models for anticipating events that could significantly affect the operation of their software
quality process. Some examples follow.

1. A comparison was made of the accuracy of predicting new defects for our model versus the model reported
in.16 As can be seen in Table 1, our model fared much better. However, we hasten to add that this comparison

Fig. 2 Cumulative defects (D) vs. Cumulative sloc (s) (JM1 data set).

746

SCHNEIDEWIND

Fig. 3 Control chart for time to repair defects t , vs. defect identification i (Module 11181, JM1 data set).

is only valid for this particular prediction. It should not be inferred that our model would be superior for all
types of predictions.

2. A prediction was made of the number of new defects Dn for a cumulative value of sloc = 20, 000 in Fig. 2.
This value of sloc is used to predict the value of Dn = 230 that would ensue if a value of sloc were to occur
that is not in the JM1Data Set. This type of prediction is important for anticipating rather than reacting to
events. That is, in this case, we would not want to be surprised by an increase in sloc to 20,000 that could
lead to new defects rising to 230 that might be unacceptable to NASA and its customers.

3. An analysis was made about how Statistical Process Control (SPC) could be applied to NASA software
development processes. We used the concept, developed in17, that a process has one or more outputs, such as
the time required to repair defects. SPC is based on the idea that these outputs have two sources of variation:
random and assignable cause. If the observed variability of the outputs of a process is within the expected
range of random variation, the process is said to be under statistical control. The software engineer tracks the
variability of the process to be controlled. When this variability exceeds the range to be expected from random
variation, he or she then identifies and corrects assignable causes. We determined whether time required to
repair defects is under statistical control. The result is shown in Fig. 3, where times required to repair defects
that are not under control are identified as those values that exceed the upper limit. In this example, we would
assign the cause as an insufficient number of defect repair stations, as previously mentioned, when it was
determined that mean time required to repair defects was excessive. Another observation is that all three of
the defects whose time required to repair defects exceed the control limit—i = 13, 25, 26—have a severity
value = 3. This severity level adversely affects the performance of the software system. Thus, SPC can be

747

SCHNEIDEWIND

employed to identify both defect quantities that are out of bounds—time to repair defects—and associated
data (defect severity).

V. Defect Processing Policy Issues
An application of our model is to illuminate the many issues that software engineers may want to consider

regarding defect processing. To a great extent, this involves interpreting differences between predicted or actual
defect counts and the thresholds (i.e., allowable values for achieving reliability goals). In addition to interpreting
results, this analysis is geared to taking remedial action when actual or predicted quantities are out of bounds.

1. As explained in,15 “During project execution, planned defect levels are compared to actual defect levels.
Typically, this occurs at major phase transitions (milestones). Since real performance never exactly matches
the plan, the differences must be investigated.” For example, consulting the following question might arise:
What is the mean number of defects waiting to be repaired? Since we see the answer is 1 and the threshold
is 10 in Table 1, the software passes this quality check.

2. If we focus on defect repair utilization, we see a very unsatisfactory situation. Investigation of this problem
would reveal that there is an insufficient number of defect repair stations—one! The solution is found in
equation (1.14), where n = 4 stations was found to provide acceptable utilization. Another cause for concern
is the excessive mean time required to repair defects of 228.96 days versus the threshold of 100 days shown
in Table 1. A possible response to this problem would be to determine whether, for example, the delay is
caused by an insufficient number of defect repair stations, or some other factor.

3. According to,18 quality measurement models usually include, among other things, simple progress tracks of
defects detected. Fig. 4 depicts a typical defects detected tracking chart for a single module. The software
engineer would be interested in knowing whether the track is stabilizing over time or whether it is increasing
at an increasing rate. We see that at later points in time, the track is increasing at a linear rate, which would
suggest that the quality process for this application is under control. In addition to the control aspect, the
figure tells the engineer that defect # 18 has not been repaired; this would trigger a repair action. Finally,
as suggested by,19 the knee of the curve shown in the figure serves as demarcation point for releasing the
software (i.e., the defect detection process stabilizes). This policy is satisfactory as long as defect # 18—in
this case—is repaired prior to release!

4. Another aspect of Fig. 4 that is of interest is the heights and lengths of the steps in the plot. According to,20

the lengths represent the delays between defect detection and repair and the heights represent the number
of defects delayed. In reviewing Fig. 4, we see that prior to the knee of the curve, there would be concern
because there is a large step that includes defect # 18 that has not been repaired. Later, after the knee has
been passed, we observe that the occurrence of new defects stabilizes.

5. A metric of great interest pertinent to the efficiency of the defect repair process is the probability of defect
repair Pd, computed using equation (1.7). In Table 1, we see that this value is 0.9412. This metric can be
considered to be the defect removal effectiveness that has been related to Capability Maturity Model levels.
For example,21,22 have found that defect removal effectiveness was 93% and 95% in level 4 and level 5
organizations, respectively. The significance of this point is twofold: 1) software organizations can use this
metric as one of the goals for achieving high maturity levels and 2) the metric can be used as one of the
criterions for assessing the stability of a software organization’s development process. Thus, in the case of
Pd = 94.12%, there is one data point that suggests this NASA software organization has achieved a high
level of maturity.

6. Heretofore, in 1–5 above, we have discussed policy questions, using data from a single module. Now, we
shift the emphasis to analyzing data from 22 modules. Suppose the software engineer wants to know whether
it would be easier to detect defects in simple, small modules as opposed to complex, large modules. Table 2
would serve as a guide. Using equation (1.11), we computed the probability of defect detection Pdj for each
module. Table 2 reveals some very interesting results: the highest probability corresponds to the module
with the lowest values of defect count, source lines of code, and cyclomatic complexity. Conversely, the
module with the lowest probability corresponds to the module with the highest values of these attributes.
Thus, the engineer would be encouraged by these results to use these relationships as a guide to predicting
the probability of detection of defects in other software systems with similar attributes.

748

SCHNEIDEWIND

Fig. 4 Tracking of cumulative defects detected D as a function of cumulative numbers of days since detection t

(Module 11181, JM1 data set).

VI. Conclusions and Future Research
The main benefit for the software engineer of using this model’s predictions is for anticipating rather than reacting

to events. Secondarily, the model’s predictions can be used in statistical process control to determine whether defect
processing variables are within limits or out of control. In addition, the model can be used to provide answers to
questions like the following:

Does the mean number of defects waiting to be repaired exceed the threshold?
Does the mean time to repair defects exceed the threshold?
Does the track of defect detection stabilize over time or is it increasing at an increasing rate?
Does the occurrence of new defects stabilize over time?
Is the defect removable process satisfactory?

Can the probability of defect detection be predicted and can the methodology of prediction, developed for one
project, be applied to other, similar projects? The answer to the first part of this question is “yes”, but the answer
to the second part would have to wait for the results from future research that will apply the model to other NASA
software projects. Another important research effort will be to develop a comprehensive database of NASA defect
data that correlates the various defect attribute for easy retrieval and analysis.

References
1Norman F. Schneidewind, “Modelling the Fault Correction Process”, Proceedings of The Twelfth International Symposium

on Software Reliability Engineering, Hong Kong, 27-30 November, 2001, pp. 185–190.
2Norman F. Schneidewind, “Applying Fault Correction Profiles,” Proceedings of the 28th Annual NASA Goddard Software

Engineering Workshop (SEW’03), 2003, pp. 185–192.
3Dolbec, J. and Shepard, T., “A Component Based Software Reliability Model,” presented at Conference of the Centre for

Advanced Studies on C, 1995.

749

SCHNEIDEWIND

4Norman F. Schneidewind, “Predicting Risk as a Function of Risk Factors”, The R & M Engineering Journal, American
Society for Quality, Vol. 25, No.1, 1 Mar. 2005.

5William A. Florac with the Quality Subgroup of the Software Metrics Definition Working Group and the Software Process
Measurement Project Team, “Software Quality Measurement: A Framework for Counting Problems and Defects”, Technical
Report, CMU/SEI-92-TR-022, ESC-TR-92-022, Sep. 1992.

6Fredrick S. Hillier and Gerald J. Lieberman, Introduction to Operations Research, 7th ed., McGraw Hill, 2001.
7John D. Musa, “Anthony Iannino, and Kazuhira Okumoto”, Software Reliability: Measurement, Prediction, Application,

McGraw-Hill, 1987.
8David D. Brown and Jeffrey S. Poulin, “Metrics-Based Defect Prevention In MVS”, International Business Machines

Corporation, 15 Sep. 1993.
9Swapna S. Gokhale, “Optimal Software Release Time Incorporating Fault Correction,” Proceedings of the 28th Annual

NASA Goddard Software Engineering Workshop (SEW’03), 2003, pp. 175–184.
10T.-J. Yu, V.Y. Shen, and H.E. Dunsmore, “An Analysis of Several Software Defect Models”, IEEE Transactions on Software

Engineering, Vol. 14, No. 9, Sep. 1988, pp. 1261–1270
11Sunita Chulani, “Constructive Quality Modeling for Defect Density Prediction: COQUALMO”, IBM Research, Center for

Software Engineering, International Symposium on Software Reliability Engineering, Fast Abstracts, 1999.
12Achamma Jose, Anju, N. K., and Pillai, S. K., Network, Systems and Technologies (P) Ltd., “Software Processes: Closed-

Loop Defect Removal Model Using Statistical Process Control”, Software Quality Professional, Vol. 3, No. 1, Dec. 2000.
13Card, David, and William Agresti. “Resolving the Software Science Anomaly”, Journal of Systems and Software Vol. 7,

1990, 29–35.
14Lionel C. Briand, Khaled El Emam, Bernd G. Freimut, Oliver Laitenberger, and Fraunhofer, “A Comprehensive Evalua-

tion of Capture-Recapture Models for Estimating Software Defect Content”, Institute for Experimental Software Engineering,
International Software Engineering Research Network Technical Report ISERN-98-31.

15David N. Card, Software Productivity Consortium, “Managing Software Quality With Defects 1”, Crosstalk, Mar. 2003
Issue.

16Martin Neil, Software Risk Assessment, Week 9–Software Defect Prediction using Advanced, Models, DCS337, ITEM044,
AMCM055.

17“SoftwareAcquisition Gold Practice, Statistical Process Control, FocusArea: Quality–Measurement”, The Data andAnalysis
Center for Software.

18Kevin Domzalski, BAE Systems with assistance from David Card, Q-Labs, “The Measurement Challenge of High Maturity”,
The Dod Software Tech News, Vol. 9, No. 1, Mar. 2006.

19Ram Chillarege, “Orthogonal Defect Classification”, Handbook of Software Reliability Engineering, edited by Michael R.
Lyu, IEEE Computer Society Press, 1996, Chap. 9.

20John D. Musa, Software Reliability Engineering: More Reliable Software Faster and Cheaper, 2nd. ed., McGraw-Hill, 1999.
21Software Productivity Research, Quality, and Productivity of the SEI CMM, Software Productivity Research, 1994.
22C. Jones, Software Assessments, Benchmarks, and Best Practices, Addison-Wesley, 2000.

Michael Hinchey
Editor-in-Chief

750

